)366/
P

NASA Technical Memorandum 104074

A SYSTEM APPROACH TO
AIRCRAFT OPTIMIZATION

Jaroslaw Sobieszczanski-Sobieski

(NASA-TM-104074) A SY5TEM APPROACH TO N91-24196
ATRCRAFT OPTIMIZATION (NASA) 17 p CSCL 01C

Unclas
G3/05 0013661

March 1991

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225






A SYSTEM APPROACH TO AIRCRAFT OPTIMIZATION

by

Jaroslaw Sobiesczanski-Sobieski
NASA Langley Res:arch Center, MS 246
Hampton Virginia 23665 US.A

SUMMARY

Mutual couplings among the mathematical models of physical
phenomena and parts of a system such as an aircraft com-
plicate the design process becanse each contemplated design
change may have a far reaching consequences throughout the
system. This paper outlines techniques for computing these
influences as system design derivatives useful for both judg-
mental and formal optimization purposes. The techniques fa-
cilitate decomposition of the design process into smaller, more
manageable tasks and they form 2 methodology that can casily
fit into existing engineering organizations and incorporate their
design tools.

1. INTRODUCTION

The engineering design process is a two-sided activity as
llustrated in Fig. 1. It has a qualitative side dominated by
human inventiveness, creativity, and intuition. The other side
is quantitative, concemed with generating numerical answers
to the questions that arise on the qualitative side. The process
goes forward by a continual question-answer jteration between
the two sides. To support that process one nceds a compu-
tational infrastructure capable of answering the above ques-
tions expeditionsly and accurately. For development of such
an infrastructure, the idea of “push button design™ ought to
be discarded in favor of a realistic recognition of the role of
buman mind as the leading force in the design process and of
the role of mathematics and cbmpnters as the indispensable
tools. It is clear that while conceiving different design con-
cepts is a function of human mind, the evaluation and choice
among competing, discretely different concepts, c.g., classical
configuration vs. a forward swept wing and a canard configu-
ration, requires that each concept be optimized to reveal its full
potential. This approach is consistent with the creative charac-
teristics of the human mind and the efficiency, precision, and
infallible memory of the compauter.

The computational infrastructure for support of the design
process entails data management, graphics, and numerics. The
first two embodied in CAD/CAM systems are well-known and
are taken for granted as a framework for the numerics. The
purpose of this paper is to introduce some new techniques
which may be xeghrded as a subset of the latter. Included
in the discussion are the system behavior derivatives with
respect 1o design variables, their use for both judgmental and
mathematical optimization purposes, formal decomposition
of a system into its components, and ramifications of that
decomposition for system sensitivity analysis and optimization,
all illustrated by aircraft application examples. The impact
on the design process of a methodology formed by these
techniques is also examined.

2. EFFECT OF DESIGN VARIABLE CHANGE IN A
COMPLEX SYSTEM

An aircraft is a complex system of interacting parts and physi-
cal phenomena whose bebavior may be influenced by assigning
values to the design variables. Since the design process is, gen-
erally, concemed with an aircraft that does not yet exist, one
works with its surrogate—a system of mathematical models
that carrespond, roughly, to the engineering disciplines, and to
physical parts of the vehicle. These mathematical models send
data to each other as depicted in the center of Fig. 2, and they
also accept design variable values as inputs from the designers.
To know how to change these design variables, designers must
know the answers to “what if” questions, such as “what will
be the effect on the system behavior if the design varables
X, Y, Z will be changedto X + AX, Y +AY, Z+AZ?,
implied by the loop in Fig. 2.

An cxample of a hypersonic aircraft in Fig. 3 illustrates
how difficult it may be to answer an “what if” question for
even a single variable change in 2 complex system in which
everything influcnces everything else. Consider a structural
cross-sectional thickness ¢ in the forebody of a hypersonic
aircraft shown in the upper half of Fig. 3 as a design vagable
that is to be changed. The lower half of the figure depicts a
complex chain of influences triggered by the change of ¢ and,
ultimately, affecting the vehicle performance. The change of ¢
influences the position of the bow shock wave relative to the
inlet in two ways: through the nose deflection, and through the
weight and the center of gravity position both of which affect
the trimmed angle of attack. The shock wave position relative
to the inlet is a strong factor in the propulsive efficiency of
the engine that, in tum, combines with the weight to influence
the aircraft perfformance. Additional influence on performance
is through the angle of attack whose change alters the vehicle
aerodynamic lift and drag. The resultant modifications of the
performance may require resizing of the vehicle which, of
course, may be a sufficient reason to change ¢ again, and so on,
until the iteration represented by the feedback loop in Fig. 3
converges.

The above jteration engages a number of mathematical mod-
els such as structures, aerodynamics, propulsion, and vehicle
performance. For the purposes of this discussion, each such
model may be regarded as a black box converting input to
output and, consistent with the black box concept, the inner
workings of the mode]l will be left outside of the scope of the
discussion. While it may not be too difficult to evaluate the
input-on-output effect for each single black box taken sepa-
rately, evaluation of the resultant change for the entire system
of such black boxes may be exceedingly difficult, especially
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when iterations are involved. In general, the resultant may be
» small difference of large numbers, so cven its sign may be
impossible to predict without a precise reanalysis of the entire
system.

To generalize from the above example, let X and Y denote
the system input and output, respectively, e.g., the structural
cover thickness ¢ and a measure of performance such as the
aircraft mange. Then, the derivative dY/d.X is a measure of the
influence of X on Y and its value answers quantitatively the
associated “what if” question. Morc precisely, the derivative
value informs only about the rate of change of Y at the value of
X for which the degivative was obtained. Determination of the
increment of Y for a given finite increment of X, if Y(X) is
nonlinear, can be done approximately by a linear extrapolation

¢y Yoew = Yoia + %Ax

Capability to extrapolate as above for many different X' and
Y variables, enables one to decide, cither judgmentally or
by means of an optimization program, which variables X to
change and by how much, in order to improve the design
in some way. However, that capability is predicated on
availability of the derivatives dY/dX termed the system design
derivatives (SDD). For large system analysis, especially if the
analysis is iterative, its is advantageous to avoid the brute force
method of finite differencing on the entire system analysis in
computation of these derivatives.

2.1 System Design Derivatives

Remembering that the mathematical model of an engineering
system may be an assemblage of a large number of mathe-
matical models representing its components and the goveming
physical phenomena, it is convenieat to limit the discussion to
three such black box models since that number is small enough
to foster comprehension and, yet, large enough to develop a
geoeral solution pattem. Ascribing a vector function repre-
sentation to each black box, the set of equations représenting
the system of the black boxes a, 3, v exchanging data as
fllustrated in Fig. 4 is

i Yu = Ya(x,Yp, Y.,)
@ Y = Yp(X.Ya,¥y)
Y‘I = Y,(X,Ya, Ys)

The Y and X vadables in the above are vectors entered in
the black boxes selectively, e.g., some, but not necessarily all,
clements of the vectors X and Y, enter the black box 5 as
inputs. Regarding Yg(X,Yo,Y,) as an example of a black
box, the arguments, X,Yq,Y,, arc the inputs and Yp is an
output. The functions in eq. 2 are coupled by their outputs
appearing as inputs, hence they form a sct of simultanecus
equations that can be solved for Y for given X. The act of
obtaining such a solution is referred to as the system analysis
(SA). In the presence of nonlinearities, SA is usually iterative.

For each function in eq. 2, ope can calculate derivatives of
output with respect to any particular input variable, assuming
that other variables are fixed. From the entirc system perspec-
tive, these derivatives are partial derivatives since they mea-
sure only the local input-on-output effect, as opposed to SDD

which are total derivatives because they include the effect of
the couplings. To prepare for further discussion, the partial
derivatives corresponding to the Y-inputs are collected in the
Jacobian matrices designated by a pair of subscripts identifying
the origins of the output and input, respectively. For example,

@3) Jya = [0Y,/8Y.]

is a matrix whose j-th column is made of the partial derivatives
8Y,;/3Y,;. Assuming the length of Y, as N, and the length
of Y, as N,, the dimensions of matrix J,q are Ny x No.
It will be mnemonic to refer to the partial derivatives in the
Jacobian matrices as the cross-dervatives.

The remaining partial derivatives corresponding to the X-
inputs are collected in vectors, one vector per each of the NX
elements of the vector of design vadables X, e.g,

(4) {8Ya/0X)y) =[8Ya/0X), k=1,...,NX;

is a vector of the length Ny (' denotes transposition).

Calculation of the above partial derivatives may be accom-
plished by any means available for a particular black box
at band, and may range from finite differencing to quasi-
analytical methods (ref. 1, and 2).

It was shown in ref. 3 that differentiation of the functions in
eq. 2 as composite functions and application of the implicit
function theorem leads to a set of simultaneous, linear, alge-
braic equations, referred 1o as the Global Sensitivity Equations
(GSE), in which the above partial derivatives appear as coeffi-
cients and the SDD are the unknowns. For the system of eq. 2,
the GSE arc

I =Jyg =Juy dY,/dX; Ya /08X,
~J8a I ~Jgy dYp/dX; p = aYp/3X;
ta -ty 1 JLanan ) Lovyex,

)

These equations may be forrmed only after the SA was per-
formed for a particular X, a particular point in the design

‘space because the computation of the partial derivatives re-

quires that all the X and Y values be known. For a given
X, the matrix of coefficients depends only on the system cou-
plings and is not affected by the choice of X for the right hand
side. Heace that matrix may be factored once and reused in 2
backsubstitution operation to compute as many aets of SDD’s
as many different X, variables are represented in the set of
multiple right-hand-side vectors.

As recommended in ref. 3, numerical solution of eq. 5 and
interpretation of the SDD values will be facilitated by nommal-
ization of the coefficients in the matrix and in the right hand
sides by the values of Y, and X, of the Y and X variables for
which the partial derivatives were calculated. The normalized
coefficients take on the following form, illustrated by a few
examples from i-th row in the f partition in eq. 5

(6) ~ 5. QBaij; oYy B Gx, gpxik



where the normalization coefficients ¢ are

Yajo Yoio

_ Xio
9Baij = Yﬁ_io; 9Bvi; = %; 98xik = E;

Solution of the nommalized eq. 5 yields normalized values of
the SDD’s from which the unnommalized values may always
be recovered given the above definitions.

Formation of the GSE and their solution for a set of SDD’s
will be referred to as the System Sensitivity Analysis (SSA).

22 Utility of the System Design Derivatives

The SDD carry the trend information that under a conventional

approach would be sought by resorting to statistical data or to
the parametric studies. The former have the merit of capturing
a vast precedent knowledge but may tum out to be ineffective
if the vehicle at hand is advanced far beyond the existing
experience. The larter provide an insight into the entire interval
of interest but only for a few variables at a time, and that insight
tends to be quickly lost if there are many design variables, in
which case the computational cost of the parametric studies
also may become an impediment.

In contrast, the SDD information is strictly local but it reflects
the influences of all the design variables on all aspects of the
system behavior. Therefore, the SSA should not be regarded as
a replacement of the above two approaches but as their logical
complement whose results are useful in at least two ways.

221 Ranking design variables for effectiveness

A full set of SDD for a system with NY variables in Y and
NX variables in X is a matrix NY x NX. The j-th column
of the matrix describes the degree of influence of variable X;
on the behavior variables Y. Conversely, the i-th row shows
the strength of influence of all the design variables X on the
i-th behavior variable Y;. For nomalized SDD's, comparison
of these strengths of influence becomes meaningful ind may
be vsed to rank the design varables by the degree of their
influence on the particular behavior variable. This ranking
may be used as a basis for judgmentally changing the design
variable values and for deciding which design variables to use
in a formal optimization.

An example of such ranking is illustrated for the wing of a
general aviation aircraft shown in Fig. 5. The design variables
are thicknesses ¢ of the panels in the upper cover of the wing
box and the behavior variable is the aircraft range R. The
chain of influences leading from a panel thickness to the range
calculated by means of the Breguet formula is depicted on
the left side in Fig. 6. In the Breguet formula, W, denotes the
zero-fuel weight and W, stands for the fuel weight. Increasing
t in one of the panels increases the weight W, and, in general,
reduces the drag of a flexible wing by stiffening its structure.
Consequently, the range is influenced in conflicting ways that
would make prediction by judgment difficult. However, the
corresponding SSA yields the SDD’s for the upper row of the
wing cover panels illustrated by the heights of the vertical bars
over the upper wing cover panels in Fig. 6. The bars show that
among all the wing cover panels, increasing ¢ in the extreme
outboard panel would increase range the most.

222 Gradient-guided formal optimization

Most of the formal optimization methods applicable in large
engineering problems use the first derivative information to
guide the search for a better design. Since the SDD values
provide such information for all the Y and X variables of
interest, the SSA may be incorporated, together with SA, in a
system optimization procedure (SOP) based on the well-known
piecewise approximate analysis approach (e.g., ref. 4). The
SOP flowchart is depicted in Fig. 7. An important benefit of
the SOP organization is the opportunity for parallel processing
seen in the flowchart operation immediately following the
SA. In that operation, one computes concurently the partial
derivatives of input with respect to output for all the system
black boxes, in order to form the Jacobian matrices (eq.
3) and the right-hand-side vectors (eq. 4) needed to form
the GSE (eq. 5) whose solution yields the SDD's. In a
conventional approach, these SDD's would be computed by
finite differencing on SA. The SDD values are subsequently
used in Approximate Analysis (extrapolation formulas) that
supplies the optimizer (a design space search algorithm) with
information on the system behavior for every change of the
design variables generated by that optimizer, and does it at a
cost negligible in comparison with the cost of SA.

A generic hypersonic aircraft similar to the one that was dis-
cussed in Fig. 3 was used as a test for the above optimization.
The geometrical design variables for the case are shown in
Fig. 8. Additional design variables were the deflections of
the control surfaces, and the cross-sectional structural dimen-
sions of the forebody. The propulsive efficiency measured by
the I,p index, defined as the thrust minus drag divided by the
fuel mass flow rate, was chosen as the objective function to
be maximized. The sircraft take-off gross weight (TOGW)
for a given mission is very sensitive to that index, thus max-
imization of the index effectively minimizes TOGW. For the
reasons discussed in conjunction with Fig. 3, the problem re-
quires consideration of a system composed of acrodynamics,
propulsion, performance analysis, and structures. The opti-
mization included constraints on the aircraft as a whole and on
behavior in the above disciplines. Results are shown in Table 1
in terms of the initial and final values of the design variables
(cToss-sectional dimensions omitted) and of the objective func-
tion, all normalized by the initial values. Considering that the
initial values resulted from an extensive design effort using
a conventional approach, the nearly 13% improvement in the
propulsive efficiency was regarded as very significant indeed.

Another example of the SOP application is the case of a hyper-
sonic interceptor (Fig. 9a) reported in ref. 5. The optimization
objective was the minimum of TOGW for the mission pro-
file ustrated in Fig. 9b. The systemn comprised the modales
of the configuration geometry, configuration mass properties,
mission performance analysis, acrodynamics, and propulsion
as depicted in Fig. 10, and the design variables were the wing
area, scale factor for the turbojet engine, scale factor for the
ramjet engine, and the fuselage length. The constraint list in-
cluded a limit on the time needed to reach the combat zone,
the take-off velocity, and the fuel available mass being at least
equal to the one required (the fuel balance constraint). It should
be noted that in a conventional approach to aircraft design, sat-
isfaction of the latter constraint is one of the principal goals in



development of a baseline configuration whose improvement
is subsequently sought by parametric studies in which the de-
sign vagiables are varied while always striving to hold the fuel
balance constraint satisfied. In contrast to that practice, the op-
timization reported in ref. 5 allowed the fuel balance constraint
to be violated in the baseline configuration and achieved satis-
faction of that constraint in the course of the optimization pro-
cess. This demonstrated that an optimization procedure may
do more than just improve on an initial, feasible configuration;
it can actually synthesize an optimal coafiguration starting with
ooe that is not even capable of performing a required mission.

The optimization results are illustrated by a vertical bar chart in
Fig. 11 that shows the changes of the design vaziables and of a
significant (13%) improvement of the objective function. The
figure shows also that the initially vialated coustraints of time
to intercept and take-off velocity were brought to satisfaction
in the optimal configuration. The SOP converged in only 4 to
5 repetitions of SA and SSA.

3. MERITS AND DEMERITS

Before discussion of the ramifications of the above sensitivity-
based optimization in a system design process, it may be useful
to examine briefly the metits and demerits of the proposed
approach relative to the conventional technique of generating
SSD by finite differencing on the entire SA.

3.1 Accuracy and Concurrent Computing

The SSA based on eq. 5 has two unique advantages. First,
the accuracy of SDD is intrinsically superior to that obtainable
from finite differencing whose precision depends on the step
length in a manner that is difficult to predict. As pointed out
in ref. 6 it is particulady true in the case of an iterative SA
whose result often depends on an arbitrary, “practical” con-
vergence criterion. Second, there is an opportunity for con-
current computing in the genecration of the partial derivatives
which exploits the technology of parallel processing offered
by multiprocessor computers and computer networks. Con-
current computing also enables the engineering workload to
be distributed among the specialty groups in an engineering
organization to compress the project execution time.

3.2 Computational Cost

Experience indicates that in large engineering applications,
most of the optimization computational cost is gencrated by the
finite difference operarions. Therefore, relative reduction of the
cost of these operations translates into peady the same relative
reduction of the cost of the entire optimization procedure.

The computational cost of the SSA based on eq. 5, designated
C1, may be reduced, in most cases very decisively, below
that of finite differencing on the entire SA, denoted by C7,
but to achicve that reduction the analyst should be aware of
the principal factors involved. To define these factors, let the
computational cost of one SA be denoted by CS A while CBA;
will stand for the computational cost of one analysis of the
i-th black box in the system composed of NB black boxes.
The i-th black box receives an input of NX; design variables
X, and NY; variables Y from the other black boxes in the
system. Asnmimg for both alternatives the simplest one step

finite difference algonthm that requires one reference analysis

and ooc perturbed analysis for each input variable, the costs
(1 and Cz may be estimated as

Ci=)_(1+NX;+ NY,)CBA;
Y] i
Cy=(1+NX)CSA

Even though one may expect CBA; < CSA, a sufficiendy
large NY; may generate C) > Cz and render SSA based on
q. 5 unattractive compared to finite differencing on the entire
SA. This points to NY;, temmed the interaction bandwidth,
as the critical factor whose magnitude should be reduced as
much as possible. Reducing the interaction bandwidth requires
judgment as illustrated by an example of an elastic, high aspect
ratio wing treated as a system whose acroelastic behavior
is modeled by interaction of acrodynamics and structures,
represented by an CFD apalysis and Finite Element analysis
codes, respectively. If one let the full output from each of
these black boxes be transmitted to the other, there might
be bundreds of pressure coefficients entering the structural
analysis and thousands of deformations sent to the acrodynamic
analysis. With the NY; values in the hundreds and thousands,
respectively, it would be quite likely that C'y > C3. However,
ope may condense the information flowing between the two
black baxes by taking advantage of the high aspect ratio wing
slendemess. For a slender wing it is reasonable to represent
the entire acrodynamic load by, say, a set of 5 concentrated
forces at each of 10 separate chords, and to reduce the elastic
deformation data to, say, clastic twist angles at 7 scparate
chords. This condensation reduces the NY; values to 50
for structures and 7 for aerodynamics. In the finite clement
code, that implies 50 additional loading cases all of which
can be camputed very efficiently by the multiple loading case
optioo—a standard feature in finite element codes. The CFD
code would have to be executed only 7 additional times. Thus,
the advantage of the interaction bandwidth condensation is
evident. In general, a condensation such as the one described
above for a paricular example may be accomplished by
the reduced basis methods, among which the Ritz functions
approach is, perhaps, the best known one.

3.3 Potential Singularity

Onc should be aware when using SSA based oo eq. 5 that,
in some cases, the matrix of coefficients in these equations
may be singular. In geometrical terms, a solution in SA
may be interpreted geometrically as a vertex of hyperplanes
on which the residuals of the goveming equations for the
black boxes involved are zero. As pointed in ref. 3, eq. 5 are
well-conditioned if these hyperplanes intersect at large angles,
ideally whep they are mutually orthogonal. For two functions
of two variables the zero-residual hyperplanes redyce to the
zero-residual contours, and an cxample of a nearty-orthogonal
solution intersection is shown in Fig. 12a. In some cases,
the intersection angles may tend to be very acute, in the limit
they may be zero in which case a solution exist by virtue of
tangency of two curved contours as illustrated in Fig. 12b. It
is shown in ref. 3 that eq. 5 imply local linearization of these
contours in the vicinity of the intersection point so that the
solution point is intcrpreted as an intersection of the tangents.
Consequently, in the situation depicted in Fig. 12b the tangents



coincide and the matrix of eq. 5 becomes singular. In such a
case, eq. 5 should be replaced by an altemative formulation of

the system sensitivity equations in ref. 3 based on residuals.

There were no cases of singularity reported so far in any
applications probably because the system solutions of the type
lustrated in Fig. 12b characterize an ill-posed system analysis
usually avoided in practice.

3.4 Discrete Variables

Neither the reference technique nor the SSA based on eq. 5 can
accommodate truly discrete design variables. Truly discrete
design vaziables are defined for the purposes of this discussion
as those with respect to which SA is not differentiable. These
are distinct from quasi-discrete variables with respect to which
SA is differentiable but which may only be physically realiz-
able in a set of discrete values. An example of the former is
an engine location on the aircraft: either under the wing or at
the aft end of the fuselage. An example of the latter is sheet
metal thickness available in a set of commercial gages.

In the case of truly discrete design variables, different combina-
tions of such variables define different design concepts (alter-
natives) and each concept may be optimized in its own design
space of the remaining continuous varjables, in order to bring
it up to its true potential. Then, one may choose from among
the optimal altematives. Occasionally, a continuous transfor-
mation might be possible between two copcepts that seem to
be discretely different. For example, a baseline aircraft with a
canard, a wing, and a conventional tail may be reshaped into
any configuration featuring all, or only some of these three
lifting surfaces. This is so because a sensitivity-guided SOP
may eliminate a particular feature, if 2 design variable is re-
served for that feature and if the feature is present in the initial
design (bowever, a feature initially absent cannot, in general,
be created).

3.5 Non-utilization of Disciplinary Optimization

Organization of the SOP discussed above may be described as
“decomposition for sensitivity analysis followed by optimiza-
tion of the entire, undecomposed system”. It may be regarded
as a shortcoming that the procedure leaves no clear place for
the use of the vast expertize of optimization available in the in-
dividual black boxes representing engineering disciplines. Ex-
amples of such local, disciplinary optimization techniqoes are
the optimality criteria for minimum weight in structures, and
shaping for minimum drag for a constant lift in acrodynamics.
It appears that combining these local, disciplinary optimiza-
tion techniques with the overall system optimization should
bencfit the larter. Indeed, one way in which these techniques
may be used without changing anything in the SOP organiza-
tion described above is in the SOP initialization. Obviously,
starting SOP from a baseline system composed of the black
boxes already preoptimized for minimum weight, minimum
drag, maximum propulsive efficiency, etc. should accclerate
the SOP convergence and improve the end result. Such local

optimizations could be accomplished separately for each black

box, assuming X and guessing at the Y inputs.

Beyond that, the issue of incorporating the local, disciplinary
optimization in SOP remains to be a challenge for further

development. Some solutions were proposed in ref. 7 and 8 but
their effectiveness is yet to be proven in practice. This issue
will be taken up again in the later discussion in conjunction
with the special case of a hierarchic system decomposition
which does accommodate the local optimizations.

4. FORMAL DECOMPOSITION

When the system at hand contains a large number of black
boxes and, especially, if there is little or no experience with
its solution, it is useful to apply a formal technique to deter-
mine the data flow among the black boxes. The data flow
information is useful because it characterizes the system as
noa-hierarchic, hierarchic, or hybrid, and this, in tumn, belps to
choose an optimization approach and to establish an efficient
organization of computing. Such formal techniques are svail-
able in Operations Research and some of them were adapted
for the system analysis and optimization purposes, e.g., ref. 9.

4.1 N-square Matrix

A brief introduction to one such technique begins with a
formalization of a black box (a module) in the system as one
that receives inputs through the top and bottom horizontal sides
and sends the output through the left and right vertical sides as
as shown in Fig. 13. Using that fonnalism, one can represent a
four-module system example depicted by the diagram (known
as the graph-theoretic format) in Fig. 14a in a different format
shown in Fig. 14b. That format is known as the N-square
Matrix format because N modules placed along the diagonal
form an N? table. The N-square Matrix format assumes that
the modules are executed in order from upper left to lower
right (although, if possible, concurrent executions are allowed).
If the execution order is not yet known, the order along the
diagonal may be arbitrary. Referring to Fig. 13, each module
may, potentially, send data horizontally, left and right, and
receive vertically from above and from below. The actual
data transmissions from and to i-th module are determined by
comparing the module input list to the predecessor module
output lists while moving upward in column i. Wherever a
needed input item is found on the output list from module j,
a dot is placed at the intersection of the i-th column and j-th
row as a data junction indicating transmission of output from
module j to input of module i. After the predecessor module
search gets to the first module, it switches to module i + 1
and continues downward through all the successor modules to
module N. If more than one source is found for a particular
input item, a unique, single source must be judgmentally
selected. However, an output item may be used by scveral
receiver modules and may also be sent to the outside. The
input items that could not be found in the vertical search are
designated primary inputs to be obtained from the outside of
the system. The above search is readily implementable on a
computer.

When the above search procedure is completed for all the
modules, the result is an V-square Matrix as in Fig. 14b that
conveys the same information as the diagram in Fig. 14a but
is amenable to computerized manipulation. To see what such
manipulation may achieve, observe that each dot in the upper
triangle of the N-square Matix denotes an instance of the
data feedforward, and each dot in the lower triangle notes an



instance of the data fecdback. Of course, every instance of
a feedback implics an iteration loop required by the assumed
diagonal order of the modules. However, that order may be
changed at will by a code that may be instructed to switch
the modules around, with the associated permutations of the
rows and columns to preserve the data junction information, in
order to climinate as many instances of feedback as possible.
If all of them are climinated the system admits a sequential
module execution, and may offer opportunities for concurrent
executions of some modules. If a complete elimination of
the feedbacks is not possible, they are reduced in oumber
and clustered. An example of a fairly large N-square Matrix

in the initial, arbitrary order is shown in Fig. 15a while its

clustered statc is shown in Fig. 15b. In the clustered state
the system is hybrid—parially hierarchic and partially non-
hierarchic. A software tool that is available to make the above
transformation is described in ref. 9. All the modules in one of
the clusters in Fig. 15b may be regarded as a new supermodule,
and the system diagram may be drawn in terms of these
supermodules as shown in Fig. 16. This diagram defines a
hicrarchic decomposition of a system because the data flow
from the top of the pyramidal hierarchy to the bottom, without
reversing the flow and without lateral flow, while inside of
cach cluster there is a system whose modules define a non-
hierarchic decomposition.

The N-square Matrix structure has a reflection in the struc-
ture of the matrix of cocfficients in eq. 5: each feedforward
instance in the former gives risc to a Jacobian matxix located
below the diagonal in the latter and each feedback is reflected
in a Jacobian above the diagonal Hence, a sequential system
without fecdbacks has a matrix of coefficients populated only
below the diagonal so that eq. 5 may be solved by backsubsti-
tution of the right hand sides without factoring of the matdx
of coefficients.

42 SOP Adapted to Hierarchic System

When a decomposed system has a hierarchic structure; its SOP
may be reorganized to include separate optimizations in each
black box. This SOP version was introduced in ref. 10 and
called an optimization by linear decomposition. It has found
a pumber of applications, for example, it was the basis for an
algorithm for multilevel structural optimization by substructur-
ing in ref. 11, and its use in multidisciplinary applications was
reported in ref. 12 for control-structure interaction and in ref.
13 for optimization of a transport aircraft.

Multilevel optimization of a hierarchic system by a linear de-
composition exploits the top-down flow of the analysis infor-
mation. At the bottom level, the inputs obtained from analysis
at the next higher level and the appropriate design variables
are regarded as constants in optimization of each, bottom-level
black box. Derivatives of each such optimization are computed
with respect to these input constants by means of an algo-
rithm described in ref. 14 and are used in linear extrapolations
(hence the name of the technique) to approximate the effect
of the input constants on the optimization results. Optimiza-
tons in the black boxes at the next higher level approximate
their influence on the lower level optimization by means of
these extrapolations. Thus, the top black box optimization is
performed taking an approximate account of the effect of its

variables (the system level variables) on all the black boxes in
the hicrarchic pyramid. As mentioned in the foregoing, the ad-
vantages of the SOP exploiting the hierarchic structure of the
system is a separation of the bottom level detailed optimiza-
tions from the top level system optimization, and breaking the
large system optimization problem into a number of smaller
optimization problems, in contrast to the non-hicrarchic sys-
tem SOP (Fig. 7) in which optimization is performed for the
system as a whole. However, if any of these black boxes in
a hierarchic system contains a cluster (see discussion of Fig.
16) of black boxes forming 2 non-hierarchic system, the non-
hierachic system SOP (Fig. 7) may be used to optimize it lo-
cally. Hence, both methods for system optimization described
above, the one based on the linear decomposition (ref. 10) as
well as the SOP besed on Fig. 7 flowchart have their place in
optimization of a general case of a hybrid engineering system
that exhibits both the hierarchic and non-hierarchic structures
depicted in Fig. 16.

As reported in ref. 13, the linear decomposition method was
used to optimize the variables of configuration geometry and
cross-sectional structural dimensions of a transport aircraft il-
lustrated in Fig. 172 for minimum fuel bumed in a prescribed
mission, under constraints drawn from the disciplines of acro-
dynamics, perfformance and structures. The analysis was rel-
atively deep, e.g., a CFD code in aerodynamics, and a finite
element model of the built-up structure of the airframe struc-
tures. The number of design variables was over 1300, and
the oumber of constraints was also in thousands. Optimization
was conducted decomposing the problem into a three-level hi-
erarchic system shown in Fig. 17b. A sample of results is
depicred in Fig. 18 showing a smooth convergence of the fuel
mass and the structural weight in only 4 to 6 cycles (one cycle
comprised the top-down analysis and the bottom-up optimiza-
tions), for both feasible and infeasible initial design.

5. GENERALIZATION TO ENTIRE VEHICLE DESIGN
PROCESS

The approach to the system sensitivity and optimization dis-
cussed in the foregoing may be generalized to serve the entire
design process as shown in ref. 15 using as an example a def-
inition of that process given in ref. 16. The process defined in
ref. 16 is a conventional, sequential process illustrated in Fig.
19. As suggested in the upper right carner of the flowchart, any
change in 2 major design vagiable such as the wing or engine
size requires reentry into the sequence and repetition of all the
operations in the chain. However, the black boxes forming the
sequence are also forming a coupled system whose diagram is
depicted in Fig. 20. The amows in the diagram represent the
data flow among the black boxes, examples of the data being
defined in Table 2. Application of the SSA based on eq. 5 10
the system in Fig. 20 leads to GSE in the format shown in Fig.
21. In the abbreviated notation used in that figure, Y;; stands
for a Jacobian matrix J;; defined in eq. 3. Solution of the
equations shown in Fig. 21 yields the SDD values that answer
the “what if” questions implied in the upper right comner of the
flowchart in Fig. 19, and does it for all the variables of interest
simultaneously and without repeating the =ntire chain for every
question. The SDD values may then be used to support judg-
mental design decisions and/or to guide a formal optimization



according to the SOP in Fig. 7.

6. CONCLUDING REMARKS

Design of an engineering system, such as an aircraft, is a
formidable task involving a myriad of cross-influences among
the engincering disciplines and parts of the system. The
time-honored approach to that task is to decompose it into
smaller, more manageable tasks. The paper outlines some
recently developed techniques that suppont such an approach
by building an engineering system optimization on a modular
basis, that comprises engineering specialty groups and their
black box tools and allows engineers to retain responsibility for
their domains while working concurrently on manageable tasks
and communicating with each other by means of sensitivity
data The modularity and concumence of operations map
onto the familiar structure of the enginecring organizations
and are compatible with the emerging computer technology
of multiprocessor computers and distributed computing. The
only major new requirement is the generation of derivatives of
output with respect to input in each specialty domain.

The use of sensitivity data as the communication medium is the
distinguishing feature of the proposed approach and represeat
a major improvement over the present practice because jt adds
the trend infornmation to the function value information. Both
types of information enhance the human judgment and intuition
while being readily usable in guiding the formal optimization
procedures.
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Table 1

Hypersonic aircraft optimization results

Table 2

Coupling data in aircraft system

Bascline | Optimiration Vector Y Content examples
Optimization parameter value resuits 1 See the box labeled INPUT.
Design variable 2 Wing area. aspect ratio, taper, sweep angle,
1. Forebody length 1.000 1.0299 airfoil geometry data. Engine thrust.
2. Cone angle 1.000 0.9693 3 Fuel tank Jocations and assumed volumes.
3. Upper surface height 1.000 1.0029 4 Wing structural weight and intemnal volume.
4. Geometric transition length | 1.000 1.0760 5 Take-off Gross Weight.
5. Elevon deflection 1.000 0.8620 6 See box 6.
6. Bodyflap dcﬂec;u'on 1.000 1.0320 7 Landing gear weight and location, in
Objective stowed and extended position.
Effective trimmed Isp 1.000 1.1259 Take-off field length.
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® System sensitivity equations of design represented as coupled system
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® These system derivatives answer "What it" questions regardingl these

variables without reanalyzing the system

21. GSE matrix for the system of Fig. 20.
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